Mining Implications From Data
نویسندگان
چکیده
Item Tree Analysis (ITA) can be used to mine deterministic relationships from noisy data. In the educational domain, it has been used to infer descriptions of student knowledge from test responses in order to discover the implications between test items, allowing researchers to gain insight into the structure of the respective knowledge space. Existing approaches to ITA are computationally intense and yield results of limited accuracy, constraining the use of ITA to small datasets. We present work in progress towards an improved method that allows for efficient approximate ITA, enabling the use of ITA on larger data sets. Experimental results show that our method performs comparably to or better than existing approaches.
منابع مشابه
Some properties of evaluated implications used in knowledge-based systems and data-mining
The core of expert knowledge is typically represented by a set of rules (implications) assigned with weights specifying their (un)certainties. The task of inference mechanism in such rulebased expert systems can be analyzed from the many-valued (fuzzy) logic perspective. On the other hand, implicational relations between two Boolean attributes derived from data (association rules) are quantifie...
متن کاملUniversal Approximation of Interval-valued Fuzzy Systems Based on Interval-valued Implications
It is firstly proved that the multi-input-single-output (MISO) fuzzy systems based on interval-valued $R$- and $S$-implications can approximate any continuous function defined on a compact set to arbitrary accuracy. A formula to compute the lower upper bounds on the number of interval-valued fuzzy sets needed to achieve a pre-specified approximation accuracy for an arbitrary multivariate con...
متن کاملVisual Data Mining : Framework and Algorithm
Visual data mining is the use of visualization techniques to allow data miners and analysts to evaluate, monitor, and guide the inputs, products and process of data mining. It can help introduce user insights, preferences, and biases in the earlier stages of the data mining life-cycle to reduce its overall computation complexity and reduce the set of uninteresting patterns in the product. Even ...
متن کاملMining Large Heterogeneous Cancer Data Sets Using Boolean Implications
Boolean implications (if-then rules) provide a conceptually simple, uniform and highly scalable way to find associations between pairs of random variables. In this paper, we describe their usage in mining associations from large, heterogeneous cancer data sets. Next, we illustrate how Boolean implications were used to discover a new causal association between a mutation and aberrant DNA hyperme...
متن کاملAn Isi Research Framework: Information Sharing and Data Mining
To address the data and technical challenges facing ISI, we present a research framework with a primary focus on KDD (Knowledge Discovery from Databases) technologies. The framework is discussed in the context of crime types and security implications. Selected data mining techniques, including information sharing and collaboration, association mining, classification and clustering, text mining,...
متن کاملJustification and Hypothesis Selection in Data Mining
Data mining is an instance of the inductive methodology. Many philosophical considerations for induction can also be carried out for data mining. In particular, the justification of induction has been a long-standing problem in epistemology. This article is a recast of the problem in the context of data mining. We formulate the problem precisely in the rough set-based decision logic and discuss...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014